135 research outputs found

    A Generalized Preferential Attachment Model for Business Firms Growth Rates: II. Mathematical Treatment

    Get PDF
    We present a preferential attachment growth model to obtain the distribution P(K)P(K) of number of units KK in the classes which may represent business firms or other socio-economic entities. We found that P(K)P(K) is described in its central part by a power law with an exponent ϕ=2+b/(1b)\phi=2+b/(1-b) which depends on the probability of entry of new classes, bb. In a particular problem of city population this distribution is equivalent to the well known Zipf law. In the absence of the new classes entry, the distribution P(K)P(K) is exponential. Using analytical form of P(K)P(K) and assuming proportional growth for units, we derive P(g)P(g), the distribution of business firm growth rates. The model predicts that P(g)P(g) has a Laplacian cusp in the central part and asymptotic power-law tails with an exponent ζ=3\zeta=3. We test the analytical expressions derived using heuristic arguments by simulations. The model might also explain the size-variance relationship of the firm growth rates.Comment: 19 pages 6 figures Applications of Physics in Financial Analysis, APFA

    Scale-Dependent Price Fluctuations for the Indian Stock Market

    Full text link
    Classic studies of the probability density of price fluctuations gg for stocks and foreign exchanges of several highly developed economies have been interpreted using a {\it power-law} probability density function P(g)g(α+1)P(g) \sim g^{-(\alpha+1)} with exponent values α>2\alpha > 2, which are outside the L\'evy-stable regime 0<α<20 < \alpha < 2. To test the universality of this relationship for less highly developed economies, we analyze daily returns for the period Nov. 1994--June 2002 for the 49 largest stocks of the National Stock Exchange which has the highest volume of trade in India. We find that P(g)P(g) decays as an {\it exponential} function P(g)exp(βg)P(g) \sim \exp(-\beta g) with a characteristic decay scales β=1.51±0.05\beta = 1.51 \pm 0.05 for the negative tail and β=1.34±0.04\beta = 1.34 \pm 0.04 for the positive tail, which is significantly different from that observed for developed economies. Thus we conclude that the Indian stock market may belong to a universality class that differs from those of developed countries analyzed previously.Comment: 7 pages, 8 figure

    The Power (Law) of Indian Markets: Analysing NSE and BSE trading statistics

    Get PDF
    The nature of fluctuations in the Indian financial market is analyzed in this paper. We have looked at the price returns of individual stocks, with tick-by-tick data from the National Stock Exchange (NSE) and daily closing price data from both NSE and the Bombay Stock Exchange (BSE), the two largest exchanges in India. We find that the price returns in Indian markets follow a fat-tailed cumulative distribution, consistent with a power law having exponent α3\alpha \sim 3, similar to that observed in developed markets. However, the distributions of trading volume and the number of trades have a different nature than that seen in the New York Stock Exchange (NYSE). Further, the price movement of different stocks are highly correlated in Indian markets.Comment: 10 pages, 7 figures, to appear in Proceedings of International Workshop on "Econophysics of Stock Markets and Minority Games" (Econophys-Kolkata II), Feb 14-17, 200

    Statistical Properties of Business Firms Structure and Growth

    Get PDF
    We analyze a database comprising quarterly sales of 55624 pharmaceutical products commercialized by 3939 pharmaceutical firms in the period 1992--2001. We study the probability density function (PDF) of growth in firms and product sales and find that the width of the PDF of growth decays with the sales as a power law with exponent β=0.20±0.01\beta = 0.20 \pm 0.01. We also find that the average sales of products scales with the firm sales as a power law with exponent α=0.57±0.02\alpha = 0.57 \pm 0.02. And that the average number products of a firm scales with the firm sales as a power law with exponent γ=0.42±0.02\gamma = 0.42 \pm 0.02. We compare these findings with the predictions of models proposed till date on growth of business firms

    The foreign exchange market: return distributions, multifractality, anomalous multifractality and Epps effect

    Full text link
    We present a systematic study of various statistical characteristics of high-frequency returns from the foreign exchange market. This study is based on six exchange rates forming two triangles: EUR-GBP-USD and GBP-CHF-JPY. It is shown that the exchange rate return fluctuations for all the pairs considered are well described by the nonextensive statistics in terms of q-Gaussians. There exist some small quantitative variations in the nonextensivity q-parameter values for different exchange rates and this can be related to the importance of a given exchange rate in the world's currency trade. Temporal correlations organize the series of returns such that they develop the multifractal characteristics for all the exchange rates with a varying degree of symmetry of the singularity spectrum f(alpha) however. The most symmetric spectrum is identified for the GBP/USD. We also form time series of triangular residual returns and find that the distributions of their fluctuations develop disproportionately heavier tails as compared to small fluctuations which excludes description in terms of q-Gaussians. The multifractal characteristics for these residual returns reveal such anomalous properties like negative singularity exponents and even negative singularity spectra. Such anomalous multifractal measures have so far been considered in the literature in connection with the diffusion limited aggregation and with turbulence. We find that market inefficiency on short time scales leads to the occurrence of the Epps effect on much longer time scales. Although the currency market is much more liquid than the stock markets and it has much larger transaction frequency, the building-up of correlations takes up to several hours - time that does not differ much from what is observed in the stock markets. This may suggest that non-synchronicity of transactions is not the unique source of the observed effect

    Effect of Celluclast 1.5L on the Physicochemical Characterization of Gold Kiwifruit Pectin

    Get PDF
    The effects of Celluclast 1.5L concentration on the physicochemical characterization of gold kiwifruit pectin was evaluated. Varying the enzyme concentration affected the pectin yield and pectin physicochemical properties. The viscosity of extracted pectin was largely dependent on the enzyme concentration. Celluclast 1.5L with medium concentration exhibited the highest viscosity. Varying the enzyme concentration also influenced the molecular weight distribution. High molecular weight (Mw) pectin (1.65 × 106 g/mol) was obtained when the medium concentration was used. Overall, the study clearly reflects the importance of taking into consideration the amount of cellulytic enzyme added in order to determine the final quality of pectin

    Multifractal Properties of Price Fluctuations of Stocks and Commodities

    Full text link
    We analyze daily prices of 29 commodities and 2449 stocks, each over a period of 15\approx 15 years. We find that the price fluctuations for commodities have a significantly broader multifractal spectrum than for stocks. We also propose that multifractal properties of both stocks and commodities can be attributed mainly to the broad probability distribution of price fluctuations and secondarily to their temporal organization. Furthermore, we propose that, for commodities, stronger higher order correlations in price fluctuations result in broader multifractal spectra.Comment: Published in Euro Physics Letters (14 pages, 5 figures

    The components of empirical multifractality in financial returns

    Full text link
    We perform a systematic investigation on the components of the empirical multifractality of financial returns using the daily data of Dow Jones Industrial Average from 26 May 1896 to 27 April 2007 as an example. The temporal structure and fat-tailed distribution of the returns are considered as possible influence factors. The multifractal spectrum of the original return series is compared with those of four kinds of surrogate data: (1) shuffled data that contain no temporal correlation but have the same distribution, (2) surrogate data in which any nonlinear correlation is removed but the distribution and linear correlation are preserved, (3) surrogate data in which large positive and negative returns are replaced with small values, and (4) surrogate data generated from alternative fat-tailed distributions with the temporal correlation preserved. We find that all these factors have influence on the multifractal spectrum. We also find that the temporal structure (linear or nonlinear) has minor impact on the singularity width Δα\Delta\alpha of the multifractal spectrum while the fat tails have major impact on Δα\Delta\alpha, which confirms the earlier results. In addition, the linear correlation is found to have only a horizontal translation effect on the multifractal spectrum in which the distance is approximately equal to the difference between its DFA scaling exponent and 0.5. Our method can also be applied to other financial or physical variables and other multifractal formalisms.Comment: 6 epl page

    Quantitative features of multifractal subtleties in time series

    Full text link
    Based on the Multifractal Detrended Fluctuation Analysis (MFDFA) and on the Wavelet Transform Modulus Maxima (WTMM) methods we investigate the origin of multifractality in the time series. Series fluctuating according to a qGaussian distribution, both uncorrelated and correlated in time, are used. For the uncorrelated series at the border (q=5/3) between the Gaussian and the Levy basins of attraction asymptotically we find a phase-like transition between monofractal and bifractal characteristics. This indicates that these may solely be the specific nonlinear temporal correlations that organize the series into a genuine multifractal hierarchy. For analyzing various features of multifractality due to such correlations, we use the model series generated from the binomial cascade as well as empirical series. Then, within the temporal ranges of well developed power-law correlations we find a fast convergence in all multifractal measures. Besides of its practical significance this fact may reflect another manifestation of a conjectured q-generalized Central Limit Theorem
    corecore